Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15

نویسندگان

  • Liang Ma
  • Jian Zhu
  • Xiaodong Chen
چکیده

Surface initiated atom transfer radical polymerization (SI-ATRP) is one of the most versatile technique to modify the surface properties of material. Recent developed metal free SIATRP makes such technique more widely applicable. Herein photo-induced metal-free SI-ATRP of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,Ndimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organicinorganic hybrid materials. SBA-15 based polymeric composite with adjustable graft ratio was obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced adsorption ability for the model compound toluene in aqueous. This procedure provides a low cost, ready availability, and facile modification way to synthesize the polymeric composites without the contamination of metal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-initiated Atom Transfer Radical Polymerization and Solution Intercalation Methods for Preparation of Cellulose-G-PS-G-PAN/MMT Bionanocomposite

Cellulose was modified by polystyrene (PS) and polyacrylonitrile (PAN) via free radical and living radical polymerization, and then cellulose was used as the matrix in the preparation of polymer/clay nanocomposite, through a solution intercalation method. For this purpose, first, the graft polymerization of styrene (St) onto cellulose fibers was performed by using suspension polymerization and ...

متن کامل

Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes

This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...

متن کامل

A Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate

A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...

متن کامل

Poly(methyl methacrylate) grafted imogolite nanotubes prepared through surface-initiated ARGET ATRP.

Poly(methyl methacrylate) grafted imogolite clay nanotubes were fabricated via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) by designing a water-soluble amphiphilic ATRP initiator that can adsorb onto imogolite surface in an aqueous solution.

متن کامل

Visible Light-Induced Atom Transfer Radical Polymerization for Macromolecular Syntheses

Visible light-induced atom transfer radical polymerization (ATRP) of vinyl monomers are examined by using various photocatalysts systems including Type I and Type II photoinitiators, dyes, dimanganese decacarbonyl and semiconducting photocatalysts. The influence of various experimental parameters on the polymerization such as type of light sources and photocatalyts, and concentration of metal c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017